基于USB接口ID读卡器的设计
作者:谢方乐 张红雨,文维
来源:RFID世界网
日期:2011-03-21 09:36:30
摘要:USB接口ID读卡器是射频识别RFID(Radio Frequency Identification)在125 kHz的具体应用,适用于网吧管理、会员系统、考勤消费发卡器、身份识别前端等。
1 引言
USB接口ID读卡器是射频识别RFID(Radio Frequency Identification)在125 kHz的具体应用,适用于网吧管理、会员系统、考勤消费发卡器、身份识别前端等。一般的USB接口ID读卡器大多采用射频接收模块和嵌入式微控制器,但成本高,同时解码程序采用定时查询或监测信号边沿状态的方法进行解码,这些解码方法对天线载波频率以及定时准确度要求较高,当载波稍微偏离规定范围时将不能正确读卡。为降低产品的成本同时提高解码的速度、准确率、敏感度等,笔者创新采用内嵌USB接口的单片机和EM4095设计USB接口ID读卡器,同时介绍一种新的解码技术,使得载波频率偏移不影响解码,而且无需检测信号的边沿状态,能够更可靠、快速读卡。
2 系统总体框架及硬件电路设计
2.1 系统总体框架
USB接口的125 kHz ID读卡器主要包括基于SN8P2201单片机的主控模块、基于EM4095的射频模块、通信模块(USB)、外部时钟、光显示模块(LED)、声音提示模块(蜂鸣器)、电源模块、天线,如图l所示。
2.2 系统硬件电路设计
2.2.1 主控和通信模块电路
主控和通信模块电路如图2所示。SONIX单片机SN8P2201的P1.0、P1.1、P0.0引脚分别控制射频器件EM4095工作状态、接收解码的同步时钟、接收解调数据。
通信电路USB,SN8P2201的D+、D一引脚只接适当电容和电阻,就可与单片机内部数据进行USB通信,电路简单。需注意的是:VREG和GND之间连接1μF电容有助于3.3 V稳压器稳定输出,应尽可能靠近SN8P2201放置。
2.2.2 射频收发电路设计
射频器件EM4095通过天线连续发射射频载波信号,为电子标签提供能量,激活电子标签;调制发射信号,将数据通过天线传送给电子标签;通过天线接收电子标签发射信号,并解调所接收的信号,从而得到电子标签中的数据,传送给单片机做进一步处理。图3为射频收发电路。
EM4095的DEMOND_IN引脚输入AM信号在VCO输出信号的同步控制下被采样,采样输出信号由引脚CDEC外接电容隔直和带通滤波采样(消除输出中的载频成分、高频和低频噪声)后,经异步比较得到对应的数字信号。接收时,天线感生信号经耦合电容输入引脚DEMOND_IN,该信号与天线驱动器的输入信号由相位比较器进行相位比较,形成与相位差对应的电压,作为压控振荡器的控制信号,最终锁定天线发射信号频率。RDY/CL发射的方波是同天线处载波的频率相同且同步,通过它传给单片机来计算同步载波的周期数。DEMOND_OUT是AM模块携带的数字信号的输出。SHD=1,EM4095为睡眠状态。上电后,先为高电平以便初始化,然后为低电平开始发送数据。MOD接地表示只读模式。
2.2.3 其他模块电路设计
系统设计的天线电感值是345μH。天线采用铜制漆包线绕制,漆包线直径为0.29 mm。圆形(内径)直径为2 cm,115圈。读卡器直接通过USB提供+5 V电压,使单片机和EM4095正常工作,无需外接电源以及额外的5 V稳压器等,这样电源模块电路设计简单,且节省成本。采用6 MHz晶振为单片机提供外部高速时钟。
2.3 硬件测试
EM4095的调试首先检查有无时钟输出。不管电子标签是否靠近读写器,上电后RDY/CLK引脚始终输出时钟信号,否则说明EM4005未开始工作。当确定输出时钟后,可以把电子标签放在读写器的工作范围内,通过示波器观察SHD引脚的电平是否由高变低,DEMOD_OUT引脚是否有数据波形输出,若有则说明EM4005工作正常。此时,将RDY/CLK引脚接到示波器,观察其波形,通过调整C4,C10,C11的值,使输出方波的频率接近125 kHz。
3 系统软件设计
图4为软件设计总体流程。该流程基本说明读卡器工作的全过程。
USB接口的125 kHz ID读卡器设计简单,成本低廉,而且在程序中就可将USB发送的数据转换成键盘数据,无需任何上位机就可接收数据,操作更简单。同时软件采用解码方法可以在读曼彻斯特码的同时进行同步解码,速度较快,而且由于对载波频率的变化不敏感,故读卡成功率非常高。
USB接口ID读卡器是射频识别RFID(Radio Frequency Identification)在125 kHz的具体应用,适用于网吧管理、会员系统、考勤消费发卡器、身份识别前端等。一般的USB接口ID读卡器大多采用射频接收模块和嵌入式微控制器,但成本高,同时解码程序采用定时查询或监测信号边沿状态的方法进行解码,这些解码方法对天线载波频率以及定时准确度要求较高,当载波稍微偏离规定范围时将不能正确读卡。为降低产品的成本同时提高解码的速度、准确率、敏感度等,笔者创新采用内嵌USB接口的单片机和EM4095设计USB接口ID读卡器,同时介绍一种新的解码技术,使得载波频率偏移不影响解码,而且无需检测信号的边沿状态,能够更可靠、快速读卡。
2 系统总体框架及硬件电路设计
2.1 系统总体框架
USB接口的125 kHz ID读卡器主要包括基于SN8P2201单片机的主控模块、基于EM4095的射频模块、通信模块(USB)、外部时钟、光显示模块(LED)、声音提示模块(蜂鸣器)、电源模块、天线,如图l所示。
图1 系统总框架图
2.2 系统硬件电路设计
2.2.1 主控和通信模块电路
主控和通信模块电路如图2所示。SONIX单片机SN8P2201的P1.0、P1.1、P0.0引脚分别控制射频器件EM4095工作状态、接收解码的同步时钟、接收解调数据。
图2 主控和通信模块电路
通信电路USB,SN8P2201的D+、D一引脚只接适当电容和电阻,就可与单片机内部数据进行USB通信,电路简单。需注意的是:VREG和GND之间连接1μF电容有助于3.3 V稳压器稳定输出,应尽可能靠近SN8P2201放置。
2.2.2 射频收发电路设计
射频器件EM4095通过天线连续发射射频载波信号,为电子标签提供能量,激活电子标签;调制发射信号,将数据通过天线传送给电子标签;通过天线接收电子标签发射信号,并解调所接收的信号,从而得到电子标签中的数据,传送给单片机做进一步处理。图3为射频收发电路。
图3 射频收发电路
EM4095的DEMOND_IN引脚输入AM信号在VCO输出信号的同步控制下被采样,采样输出信号由引脚CDEC外接电容隔直和带通滤波采样(消除输出中的载频成分、高频和低频噪声)后,经异步比较得到对应的数字信号。接收时,天线感生信号经耦合电容输入引脚DEMOND_IN,该信号与天线驱动器的输入信号由相位比较器进行相位比较,形成与相位差对应的电压,作为压控振荡器的控制信号,最终锁定天线发射信号频率。RDY/CL发射的方波是同天线处载波的频率相同且同步,通过它传给单片机来计算同步载波的周期数。DEMOND_OUT是AM模块携带的数字信号的输出。SHD=1,EM4095为睡眠状态。上电后,先为高电平以便初始化,然后为低电平开始发送数据。MOD接地表示只读模式。
2.2.3 其他模块电路设计
系统设计的天线电感值是345μH。天线采用铜制漆包线绕制,漆包线直径为0.29 mm。圆形(内径)直径为2 cm,115圈。读卡器直接通过USB提供+5 V电压,使单片机和EM4095正常工作,无需外接电源以及额外的5 V稳压器等,这样电源模块电路设计简单,且节省成本。采用6 MHz晶振为单片机提供外部高速时钟。
2.3 硬件测试
EM4095的调试首先检查有无时钟输出。不管电子标签是否靠近读写器,上电后RDY/CLK引脚始终输出时钟信号,否则说明EM4005未开始工作。当确定输出时钟后,可以把电子标签放在读写器的工作范围内,通过示波器观察SHD引脚的电平是否由高变低,DEMOD_OUT引脚是否有数据波形输出,若有则说明EM4005工作正常。此时,将RDY/CLK引脚接到示波器,观察其波形,通过调整C4,C10,C11的值,使输出方波的频率接近125 kHz。
3 系统软件设计
图4为软件设计总体流程。该流程基本说明读卡器工作的全过程。
图4 软件设计总体流程
图5 曼彻斯特解码流程
USB接口的125 kHz ID读卡器设计简单,成本低廉,而且在程序中就可将USB发送的数据转换成键盘数据,无需任何上位机就可接收数据,操作更简单。同时软件采用解码方法可以在读曼彻斯特码的同时进行同步解码,速度较快,而且由于对载波频率的变化不敏感,故读卡成功率非常高。