RFID在维修中的应用
如果RFID应用于维修领域,航空公司的获益最显著。以查找氧气罐的维修记录为例,维修人员在飞机停场后便可立即进入客舱利用阅读器进行快速扫描,按照每个氧气罐的序列号查询其上一次维修记录,包括维修时间、维修类型。但目前,大多数情况下要想得到这些信息,需要等到飞机停场后逐个拆卸氧气罐,其中还涉及机舱顶部行李舱的拆装,这是一项非常耗时的工作。另外,维修人员有时还需要仔细搜查每个氧气罐的维修记录,因为有时很难查到。
RFID标签在航空维修领域的应用早在2005年就已开始,当年,美国联邦航空局颁布了有关被动式RFID装置的政策,该政策开启了RFID技术应用于飞机部件的大门。但是要深究其对维修业的潜在影响,还必须理解标签自身的含义以及它将为当前带来的理念。
RFID标签与识别型标签不同,识别型标签内存很小,通常仅为96比特,用于记录电子产品编码,而且其微型芯片也只保证可利用通信协议与阅读器传输信息即可。内存较大的RFID标签则是嵌在单片存储器中。目前有两种RFID标签类型可供选择;一是双记录标签,内存为1~8kB;二是多记录标签,内存为8~16kB。Tego公司认为,航空维修领域所使用的RFID标签一般需要8kB。RFID标签除了微型芯片还配有一个小型天线,数据传输主要通过超高频电波,无线电频率在北美为915MHz,在欧洲为865MHz。信息传输是双向的,阅读器也可以将最新的维修数据写入标签。RFID标签符合EPC全球第二代(Gen2)硬件标准,包括无线射频协议标准、标签与阅读设备的相关接口标准等。
内存大的RFID标签通常使用闪存(EEPROM)作为其内部存储技术,可存储数据长达5~10年。但Tego公司已经研发出了另一种可在150℃的环境下存储数据长达30年的新技术。Tego公司认为正是有了这项技术,RFID标签才能在航空业中得以推广和应用。
通常,部件的RFID标签最初包含的信息为OEM写入的新部件出厂时的一些数据,包括件号、功能描述、序列号等。随着部件在后续使用中维修次数的增多,维修数据更新和积累越来越多,则要求标签的内存越来越大。
部件OEM粘贴RFID标签的方法通常有三种,不同部件方法不同。例如,座椅架上的是粘在其背后,氧气罐上的则是用绳子系在其上,航电部件和发动机部件的标签则是使用铆接或螺接方式。空客推出的A350飞机中将使用Tego公司提供的双记录和多记录标签,覆盖范围包括350个零件编号,大约需要900个标签,甚至包括了起落架、可修复的发动机部件以及救生衣等耗材,这将会是存储式标签在空客产品中的首次应用。
粘贴RFID标签的具体流程为,Tego公司将标签直接供给部件供应商,然后由部件供应商将部件的出厂信息写入标签后交付给空客,空客接收部件时便可读取部件标签完成验收。Tego公司认为,将标签直接交付部件制造商有利于制造商为每个部件选择最适合的标签类型,以及最好的粘贴方式,并且可以根据标签的状况更改部件设计。更为重要的是,标签中要加载的部件出厂数据和数据交换标准本身就需要由部件OEM提供并制定。
空客已决定将RFID标签推广至其所有在产机型中,首先从座椅和救生衣入手。
RFID标签的价值在外场试验中也已得到证明。2008年,波音公司与日本航空公司、美国航空公司、新加坡航空公司合作就RFID的应用完成了多项案例研究,包括氧气罐、客舱顶棚、座椅及机组休息区。以检查氧气罐的有效期为例,在应用RFID标签后,检查时间由原来的6.5小时缩短至8.5分钟,节约了98%的时间,为机库、库存备件等资源的管控赢得了更大空间。
空客A350使用大容量内存RFID标签项目是航空维修领域一项重要里程碑。在2008年,空客公司提出了大容量内存RFID标签应用于A350飞机时寿件的要求,其中涉及罗克韦尔?柯林斯提供的30种航电部件。包括通信、导航和着陆有关的驾驶舱航电部件等,其上均要粘贴8KB内存容量的RFID标签。通过RFID标签,空客公司和罗克韦尔?柯林斯公司都将从此项应用中获益。当航电箱运送到装配线时,空客通过标签便可容易地识别并快速安装在正确的位置上。作为部件的OEM,罗克韦尔?柯林斯公司在维护航电部件时通过获取其标签中的精确信息可以更快速地识别故障,缩短排故时间。如果空客公司和罗克韦尔?柯林斯公司应用RFID标签能够成功,将带动更多的OEM和航空公司使用RFID标签。
在2011~2012年间,阿拉斯加航空公司也曾与波音公司合作,在其波音737机队中试验了波音商用航空服务公司的RFID集成型解决方案,而且获得了局方的认可,许多客户也产生了兴趣,但在推广应用过程中并不积极,导致丧失了良机,迫使波音商用航空服务部将此项目在一年前撤销,继续等待市场需求的发展。
罗克韦尔?柯林斯公司认为,当时波音公司并没有提出其大容量内存RFID标签存在的一些问题,而且阿拉斯加航空也没有提出。直至2008年,空客提出要求时,许多问题才浮出水面。例如,当时波音试验所用的阅读器技术尚未成熟,存在着许多可靠性问题。而且当时的阅读器供应商数量非常有限,也可以说,这项技术真正的成长是在最近两年。当然,最重要的推手是2013年航空运输协会(ATA)SPEC2000标准,推动了大容量存储RFID的实施,使其成为了一种电子商务工具。
美国西南航空公司的报告称,尽管其没有计划将大容量内存RFID标签作为一种维修新方法引入,但其企业资源计划(ERP)正在考虑通过RFID技术将原有标签升级。当然,美国西南航空公司依然很谨慎,因为在使用RFID技术时,应确保其数据的高度完整性。这对于美国西南航空公司而言,意味着数据收集准确度超过99%,为达到这一标准则必须重建新的IT基础设施。而且,当新一代维修企业ERP变得非常成熟,可以确保近100%的数据完整性时,航空公司将面临从原有ERP到新一代ERP系统的巨大转变。
应用大容量内存RFID或者其他自动数据采集流程将给传统维修企业ERP系统的数据接口问题带来严峻挑战。因为在传统的ERP系统中没有规定大容量内存RFID标签的数据类型和适用范围。很多集成的工作将是维修企业ERP下一步的升级工作,但其投资回报可能会成为问题,因为有的航空公司本打算在5年或者更长时间后才考虑升级其维修ERP系统。